Tag Archives: cnc motors

China OEM CNC Turned Stainless Steel High Precision Micro Shaft for Home Appliance Power Tools Medical Motors ball screw shaft diameter

Item Description

 

No. Product Technical specs
one Resources Carbon metal: ten#, 18#, 1018, 22#, 1571, 40Cr, forty five#, 1045, 50#, fifty five#, sixty#, 65Mn, 70#, 72B, eighty#, 82B
Alloy Construction Metal: B7, 20CrMo, 42Crmo, SCM415, SCM440, 4140
Substantial-carbon chromium bearing metal: GCr15, 52100, SUJ2
Free-chopping metal: 12L14, 12L15
Stainless metal: 1Cr13, 2Cr13, 3Cr13, 4Cr13, 1Cr17, SUS410, SUS420, SUS430, SUS416, SUS440C, 17-4, seventeen-4PH, 130M, two hundred, 201, 202, 205, 303, 303Cu, 304, 316, 316L
Aluminum grade: 6061, 6063
Brass: Hpb58-2.5 (C38000), Hpb59-1 (C37710), Hpb61-1 (C37100), Hpb62-.8 (C35000), Hpb63-.1 (C34900), Hpb63-3 (C34500), H60, H62, H63, H65
2 Diameter Ø0.3-Ø25
3 Diameter tolerance .002mm
4 Roundness .0005mm
5 Roughness Ra0.05
six Straightness .005mm
7 Hardness:  HRC/HV
8 Size 2mm-1000mm
9 Warmth remedy 1. Oil Quenching
two. Higher frequency quenching
3. Carburization
4. Vacuum Warmth treatment method
five. Mesh belt CZPT heat remedy
ten Area treatment method 1. Plating nickel
2. Plating zinc
3. Plating passivation
4. Plating phosphating
five. Black coating
six. Anodized therapy
eleven Packing Plastic baggage inside of and standard cartons outside.
Cargo by pallets or according to customer’s packing requirements.

Q: How can I get samples?
 A: Free samples and freight collect, except for special circumstances.

Q: What is your minimum order quantity for the items in the order?
 A:  2000pcs for each part except for sample.

Q: Are you a trading company or a manufacturer?
 A: We are a manufacturer, specialized in manufacturing and exporting of qualified precision micro shafts.

Q: What are your usual terms of payment?
 A:  We generally ask for payment by T/T in advance and L/C at sight.

US $0.01-3
/ Piece
|
2,000 Pieces

(Min. Order)

###

Condition: New
Axle Number: 1
Application: Car
Certification: ISO, IATF
Material: Stainless Steel
Type: Auto Shaft

###

Samples:
US$ 4/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

No. Item Specifications
1 Materials Carbon steel: 10#, 18#, 1018, 22#, 1022, 40Cr, 45#, 1045, 50#, 55#, 60#, 65Mn, 70#, 72B, 80#, 82B
Alloy Structure Steel: B7, 20CrMo, 42Crmo, SCM415, SCM440, 4140
High-carbon chromium bearing steel: GCr15, 52100, SUJ2
Free-cutting steel: 12L14, 12L15
Stainless steel: 1Cr13, 2Cr13, 3Cr13, 4Cr13, 1Cr17, SUS410, SUS420, SUS430, SUS416, SUS440C, 17-4, 17-4PH, 130M, 200, 201, 202, 205, 303, 303Cu, 304, 316, 316L
Aluminum grade: 6061, 6063
Brass: Hpb58-2.5 (C38000), Hpb59-1 (C37710), Hpb61-1 (C37100), Hpb62-0.8 (C35000), Hpb63-0.1 (C34900), Hpb63-3 (C34500), H60, H62, H63, H65
2 Diameter Ø0.3-Ø25
3 Diameter tolerance 0.002mm
4 Roundness 0.0005mm
5 Roughness Ra0.05
6 Straightness 0.005mm
7 Hardness:  HRC/HV
8 Length 2mm-1000mm
9 Heat treatment 1. Oil Quenching
2. High frequency quenching
3. Carburization
4. Vacuum Heat treatment
5. Mesh belt furnace heat treatment
10 Surface treatment 1. Plating nickel
2. Plating zinc
3. Plating passivation
4. Plating phosphating
5. Black coating
6. Anodized treatment
11 Packing Plastic bags inside and standard cartons outside.
Shipment by pallets or according to customer’s packing specifications.
US $0.01-3
/ Piece
|
2,000 Pieces

(Min. Order)

###

Condition: New
Axle Number: 1
Application: Car
Certification: ISO, IATF
Material: Stainless Steel
Type: Auto Shaft

###

Samples:
US$ 4/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

No. Item Specifications
1 Materials Carbon steel: 10#, 18#, 1018, 22#, 1022, 40Cr, 45#, 1045, 50#, 55#, 60#, 65Mn, 70#, 72B, 80#, 82B
Alloy Structure Steel: B7, 20CrMo, 42Crmo, SCM415, SCM440, 4140
High-carbon chromium bearing steel: GCr15, 52100, SUJ2
Free-cutting steel: 12L14, 12L15
Stainless steel: 1Cr13, 2Cr13, 3Cr13, 4Cr13, 1Cr17, SUS410, SUS420, SUS430, SUS416, SUS440C, 17-4, 17-4PH, 130M, 200, 201, 202, 205, 303, 303Cu, 304, 316, 316L
Aluminum grade: 6061, 6063
Brass: Hpb58-2.5 (C38000), Hpb59-1 (C37710), Hpb61-1 (C37100), Hpb62-0.8 (C35000), Hpb63-0.1 (C34900), Hpb63-3 (C34500), H60, H62, H63, H65
2 Diameter Ø0.3-Ø25
3 Diameter tolerance 0.002mm
4 Roundness 0.0005mm
5 Roughness Ra0.05
6 Straightness 0.005mm
7 Hardness:  HRC/HV
8 Length 2mm-1000mm
9 Heat treatment 1. Oil Quenching
2. High frequency quenching
3. Carburization
4. Vacuum Heat treatment
5. Mesh belt furnace heat treatment
10 Surface treatment 1. Plating nickel
2. Plating zinc
3. Plating passivation
4. Plating phosphating
5. Black coating
6. Anodized treatment
11 Packing Plastic bags inside and standard cartons outside.
Shipment by pallets or according to customer’s packing specifications.

Screws and Screw Shafts

A screw is a mechanical device that holds objects together. Screws are usually forged or machined. They are also used in screw jacks and press-fitted vises. Their self-locking properties make them a popular choice in many different industries. Here are some of the benefits of screws and how they work. Also read about their self-locking properties. The following information will help you choose the right screw for your application.

Machined screw shaft

A machined screw shaft can be made of various materials, depending on the application. Screw shafts can be made from stainless steel, brass, bronze, titanium, or iron. Most manufacturers use high-precision CNC machines or lathes to manufacture these products. These products come in many sizes and shapes, and they have varying applications. Different materials are used for different sizes and shapes. Here are some examples of what you can use these screws for:
Screws are widely used in many applications. One of the most common uses is in holding objects together. This type of fastener is used in screw jacks, vises, and screw presses. The thread pitch of a screw can vary. Generally, a smaller pitch results in greater mechanical advantage. Hence, a machined screw shaft should be sized appropriately. This ensures that your product will last for a long time.
A machined screw shaft should be compatible with various threading systems. In general, the ASME system is used for threaded parts. The threaded hole occupies most of the shaft. The thread of the bolt occupy either part of the shaft, or the entire one. There are also alternatives to bolts, including riveting, rolling pins, and pinned shafts. These alternatives are not widely used today, but they are useful for certain niche applications.
If you are using a ball screw, you can choose to anneal the screw shaft. To anneal the screw shaft, use a water-soaked rag as a heat barrier. You can choose from two different options, depending on your application. One option is to cover the screw shaft with a dust-proof enclosure. Alternatively, you can install a protective heat barrier over the screw shaft. You can also choose to cover the screw shaft with a dust-proof machine.
If you need a smaller size, you can choose a smaller screw. It may be smaller than a quarter of an inch, but it may still be compatible with another part. The smaller ones, however, will often have a corresponding mating part. These parts are typically denominated by their ANSI numerical size designation, which does not indicate threads-per-inch. There is an industry standard for screw sizes that is a little easier to understand.
screwshaft

Ball screw nut

When choosing a Ball screw nut for a screw shaft, it is important to consider the critical speed of the machine. This value excites the natural frequency of a screw and determines how fast it can be turned. In other words, it varies with the screw diameter and unsupported length. It also depends on the screw shaft’s diameter and end fixity. Depending on the application, the nut can be run at a maximum speed of about 80% of its theoretical critical speed.
The inner return of a ball nut is a cross-over deflector that forces the balls to climb over the crest of the screw. In one revolution of the screw, a ball will cross over the nut crest to return to the screw. Similarly, the outer circuit is a circular shape. Both flanges have one contact point on the ball shaft, and the nut is connected to the screw shaft by a screw.
The accuracy of ball screws depends on several factors, including the manufacturing precision of the ball grooves, the compactness of the assembly, and the set-up precision of the nut. Depending on the application, the lead accuracy of a ball screw nut may vary significantly. To improve lead accuracy, preloading, and lubrication are important. Ewellix ball screw assembly specialists can help you determine the best option for your application.
A ball screw nut should be preloaded prior to installation in order to achieve the expected service life. The smallest amount of preload required can reduce a ball screw’s calculated life by as much as 90 percent. Using a lubricant of a standard grade is recommended. Some lubricants contain additives. Using grease or oil in place of oil can prolong the life of the screw.
A ball screw nut is a type of threaded nut that is used in a number of different applications. It works similar to a ball bearing in that it contains hardened steel balls that move along a series of inclined races. When choosing a ball screw nut, engineers should consider the following factors: speed, life span, mounting, and lubrication. In addition, there are other considerations, such as the environment in which the screw is used.
screwshaft

Self-locking property of screw shaft

A self-locking screw is one that is capable of rotating without the use of a lock washer or bolt. This property is dependent on a number of factors, but one of them is the pitch angle of the thread. A screw with a small pitch angle is less likely to self-lock, while a large pitch angle is more likely to spontaneously rotate. The limiting angle of a self-locking thread can be calculated by calculating the torque Mkdw at which the screw is first released.
The pitch angle of the screw’s threads and its coefficient of friction determine the self-locking function of the screw. Other factors that affect its self-locking function include environmental conditions, high or low temperature, and vibration. Self-locking screws are often used in single-line applications and are limited by the size of their pitch. Therefore, the self-locking property of the screw shaft depends on the specific application.
The self-locking feature of a screw is an important factor. If a screw is not in a state of motion, it can be a dangerous or unusable machine. The self-locking property of a screw is critical in many applications, from corkscrews to threaded pipe joints. Screws are also used as power linkages, although their use is rarely necessary for high-power operations. In the archimedes’ screw, for example, the blades of the screw rotate around an axis. A screw conveyor uses a rotating helical chamber to move materials. A micrometer uses a precision-calibrated screw to measure length.
Self-locking screws are commonly used in lead screw technology. Their pitch and coefficient of friction are important factors in determining the self-locking property of screws. This property is advantageous in many applications because it eliminates the need for a costly brake. Its self-locking property means that the screw will be secure without requiring a special kind of force or torque. There are many other factors that contribute to the self-locking property of a screw, but this is the most common factor.
Screws with right-hand threads have threads that angle up to the right. The opposite is true for left-hand screws. While turning a screw counter-clockwise will loosen it, a right-handed person will use a right-handed thumb-up to turn it. Similarly, a left-handed person will use their thumb to turn a screw counter-clockwise. And vice versa.
screwshaft

Materials used to manufacture screw shaft

Many materials are commonly used to manufacture screw shafts. The most common are steel, stainless steel, brass, bronze, and titanium. These materials have advantages and disadvantages that make them good candidates for screw production. Some screw types are also made of copper to fight corrosion and ensure durability over time. Other materials include nylon, Teflon, and aluminum. Brass screws are lightweight and have aesthetic appeal. The choice of material for a screw shaft depends on the use it will be made for.
Shafts are typically produced using three steps. Screws are manufactured from large coils, wire, or round bar stock. After these are produced, the blanks are cut to the appropriate length and cold headed. This cold working process pressudes features into the screw head. More complicated screw shapes may require two heading processes to achieve the desired shape. The process is very precise and accurate, so it is an ideal choice for screw manufacturing.
The type of material used to manufacture a screw shaft is crucial for the function it will serve. The type of material chosen will depend on where the screw is being used. If the screw is for an indoor project, you can opt for a cheaper, low-tech screw. But if the screw is for an outdoor project, you’ll need to use a specific type of screw. This is because outdoor screws will be exposed to humidity and temperature changes. Some screws may even be coated with a protective coating to protect them from the elements.
Screws can also be self-threading and self-tapping. The self-threading or self-tapping screw creates a complementary helix within the material. Other screws are made with a thread which cuts into the material it fastens. Other types of screws create a helical groove on softer material to provide compression. The most common uses of a screw include holding two components together.
There are many types of bolts available. Some are more expensive than others, but they are generally more resistant to corrosion. They can also be made from stainless steel or aluminum. But they require high-strength materials. If you’re wondering what screws are, consider this article. There are tons of options available for screw shaft manufacturing. You’ll be surprised how versatile they can be! The choice is yours, and you can be confident that you’ll find the screw shaft that will best fit your application.

China OEM CNC Turned Stainless Steel High Precision Micro Shaft for Home Appliance Power Tools Medical Motors     ball screw shaft diameterChina OEM CNC Turned Stainless Steel High Precision Micro Shaft for Home Appliance Power Tools Medical Motors     ball screw shaft diameter
editor by czh 2022-12-29

China supplier Customized Aluminum Sand Casting Finish CNC Machining Part for Motors with Good quality

Product Description

Product Description

***Customized Precision CNC Machining Parts Manufacturing Factory.
***
Maching for casting and various rapid prototype machining part.
***Parts from various metal(steel,aluminum,brass,copper,titanium) to plastic materials.

Item Description
Equipment 5-axis machining center, 4-axis machining center, CNC vertical/horizontal machining, gantry machining center,NC boring-milling machine,NC lathe,grinding machine, etc.
Process Turning,milling,boring,drilling,honing,keyway slotter etc.
Material Aluminum: 5052,6061,6061,7075,ADC10,ADC12,A356 etc;
Steel:carbon steel,stainless steel,and other alloy steel;
Brass:C15710,C11000,C12000,C22000,C27200,etc;
Pure Ti and Ti alloy;
Plastic;
Suface polished,wet painting,powder coating,anodizing,e-coating,electro-plating;PVDF coating;chemical blacken;
Inspection CMM+gauges
Sample 100% inspection;
Mass production:On-line operator self-inspection; AQL sampling +key dimensions:100%,
Quality Control Control plan, flow chart, PPAP, PFEMA,CPK analysis;

Company Profile

HangZhou ACES is an OEM manufacturer, mainly for casting parts, CNC machining parts and sheet metal stamping parts. We have wide experience in producing and exporting metal parts, not only for OEM parts but also have the professional team for ODM.

Besides the casting, ACES also provides the customers with more comprehensive services. Various machining equipment will meet different precision machining requests, such as NC lathe, CNC precision automatic lathe, vertical CNC machine, horizontal CNC machine center, CNC engraving machine, 4-axis and 5-axis CNC machine center. From the sample developing to the mass production, the quality is strictly controlled from each operator to the professional inspection team. The quality control tools such as CMM inspection, flow chart, control plan, PPAP and CPK analysis are also widely used in our workshop.

ACES is not only an OEM casting factory but also offering the machining service. Besides the casting part machining, ACES also focuses on rapid prototyping CNC machining service from small batch to large volume mass production for various metal and plastic parts and specializes in manufacturing high precision parts.

When starting the developing, our engineering and production team will discuss the drawing, study the procedures, prepare the concerning fixtures, cutting tools and inspection gauges. If needed, we will purchase customized cutters and inspection gauges in advance so as to keep the smooth proceeding of the future production.

To create best value for each customer is our constant pursuit. High quality, on-time delivery, excellent services are the key factors of our management. Based on the professional team, ACES will offer you one-stop CNC machining OEM service. Looking forward to receiving your inquiries and being 1 of your long-term partners.

Packaging & Shipping

ACES always designs the suitable part package during sample development according to the part structure, customer`s request and batch quantity.
Every package will ensure the package and part safety during transportation, and make sure every part does not collide with each other.

FAQ

Types of Screw Shafts

Screw shafts come in various types and sizes. These types include fully threaded, Lead, and Acme screws. Let’s explore these types in more detail. What type of screw shaft do you need? Which 1 is the best choice for your project? Here are some tips to choose the right screw:

Machined screw shaft

The screw shaft is a basic piece of machinery, but it can be further customized depending on the needs of the customer. Its features include high-precision threads and ridges. Machined screw shafts are generally manufactured using high-precision CNC machines or lathes. The types of screw shafts available vary in shape, size, and material. Different materials are suitable for different applications. This article will provide you with some examples of different types of screw shafts.
Ball screws are used for a variety of applications, including mounting machines, liquid crystal devices, measuring devices, and food and medical equipment. Various shapes are available, including miniature ball screws and nut brackets. They are also available without keyway. These components form a high-accuracy feed mechanism. Machined screw shafts are also available with various types of threaded ends for ease of assembly. The screw shaft is an integral part of linear motion systems.
When you need a machined screw shaft, you need to know the size of the threads. For smaller machine screws, you will need a mating part. For smaller screw sizes, the numbers will be denominated as industry Numeric Sizes. These denominations are not metric, but rather in mm, and they may not have a threads-per-inch designation. Similarly, larger machine screws will usually have threads that have a higher pitch than those with a lower pitch.
Another important feature of machine screws is that they have a thread on the entire shaft, unlike their normal counterparts. These machine screws have finer threads and are intended to be screwed into existing tapped holes using a nut. This means that these screws are generally stronger than other fasteners. They are usually used to hold together electronic components, industrial equipment, and engines. In addition to this, machine screws are usually made of a variety of materials.
screwshaft

Acme screw

An Acme screw is the most common type of threaded shaft available. It is available in a variety of materials including stainless steel and carbon steel. In many applications, it is used for large plates in crushing processes. ACME screws are self-locking and are ideal for applications requiring high clamping force and low friction. They also feature a variety of standard thread forms, including knurling and rolled worms.
Acme screws are available in a wide range of sizes, from 1/8″ to 6″. The diameter is measured from the outside of the screw to the bottom of the thread. The pitch is equal to the lead in a single start screw. The lead is equal to the pitch plus the number of starts. A screw of either type has a standard pitch and a lead. Acme screws are manufactured to be accurate and durable. They are also widely available in a wide range of materials and can be customized to fit your needs.
Another type of Acme screw is the ball screw. These have no back drive and are widely used in many applications. Aside from being lightweight, they are also able to move at faster speeds. A ball screw is similar to an Acme screw, but has a different shape. A ball screw is usually longer than an Acme screw. The ball screw is used for applications that require high linear speeds. An Acme screw is a common choice for many industries.
There are many factors that affect the speed and resolution of linear motion systems. For example, the nut position and the distance the screw travels can all affect the resolution. The total length of travel, the speed, and the duty cycle are all important. The lead size will affect the maximum linear speed and force output. If the screw is long, the greater the lead size, the higher the resolution. If the lead length is short, this may not be the most efficient option.
screwshaft

Lead screw

A lead screw is a threaded mechanical device. A lead screw consists of a cylindrical shaft, which includes a shallow thread portion and a tightly wound spring wire. This spring wire forms smooth, hard-spaced thread convolutions and provides wear-resistant engagement with the nut member. The wire’s leading and trailing ends are anchored to the shaft by means appropriate to the shaft’s composition. The screw is preferably made of stainless steel.
When selecting a lead screw, 1 should first determine its critical speed. The critical speed is the maximum rotations per minute based on the natural frequency of the screw. Excessive backlash will damage the lead screw. The maximum number of revolutions per minute depends on the screw’s minor diameter, length, assembly alignment, and end fixity. Ideally, the critical speed is 80% of its evaluated critical speed. A critical speed is not exceeded because excessive backlash would damage the lead screw and may be detrimental to the screw’s performance.
The PV curve defines the safe operating limits of a lead screw. This relationship describes the inverse relationship between contact surface pressure and sliding velocity. As the PV value increases, a lower rotation speed is required for heavier axial loads. Moreover, PV is affected by material and lubrication conditions. Besides, end fixity, which refers to the way the lead screw is supported, also affects its critical speed. Fixed-fixed and free end fixity are both possible.
Lead screws are widely used in industries and everyday appliances. In fact, they are used in robotics, lifting equipment, and industrial machinery. High-precision lead screws are widely used in the fields of engraving, fluid handling, data storage, and rapid prototyping. Moreover, they are also used in 3D printing and rapid prototyping. Lastly, lead screws are used in a wide range of applications, from measuring to assembly.

Fully threaded screw

A fully threaded screw shaft can be found in many applications. Threading is an important feature of screw systems and components. Screws with threaded shafts are often used to fix pieces of machinery together. Having fully threaded screw shafts ensures that screws can be installed without removing the nut or shaft. There are 2 major types of screw threads: coarse and fine. When it comes to coarse threads, UTS is the most common type, followed by BSP.
In the 1840s, a British engineer named Joseph Whitworth created a design that was widely used for screw threads. This design later became the British Standard Whitworth. This standard was used for screw threads in the United States during the 1840s and 1860s. But as screw threads evolved and international standards were established, this system remained largely unaltered. A new design proposed in 1864 by William Sellers improved upon Whitworth’s screw threads and simplified the pitch and surface finish.
Another reason for using fully threaded screws is their ability to reduce heat. When screw shafts are partially threaded, the bone grows up to the screw shaft and causes the cavity to be too narrow to remove it. Consequently, the screw is not capable of backing out. Therefore, fully threaded screws are the preferred choice for inter-fragmentary compression in children’s fractures. However, surgeons should know the potential complication when removing metalwork.
The full thread depth of a fully threaded screw is the distance at which a male thread can freely thread into the shaft. This dimension is typically 1 millimeter shy of the total depth of the drilled hole. This provides space for tap lead and chips. The full-thread depth also makes fully threaded screws ideal for axially-loaded connections. It is also suitable for retrofitting applications. For example, fully threaded screws are commonly used to connect 2 elements.
screwshaft

Ball screw

The basic static load rating of a ball screw is determined by the product of the maximum axial static load and the safety factor “s0”. This factor is determined by past experience in similar applications and should be selected according to the design requirements of the application. The basic static load rating is a good guideline for selecting a ball screw. There are several advantages to using a ball screw for a particular application. The following are some of the most common factors to consider when selecting a ball screw.
The critical speed limit of a ball screw is dependent on several factors. First of all, the critical speed depends on the mass, length and diameter of the shaft. Second, the deflection of the shaft and the type of end bearings determine the critical speed. Finally, the unsupported length is determined by the distance between the ball nut and end screw, which is also the distance between bearings. Generally, a ball screw with a diameter greater than 1.2 mm has a critical speed limit of 200 rpm.
The first step in manufacturing a high-quality ball screw is the choice of the right steel. While the steel used for manufacturing a ball screw has many advantages, its inherent quality is often compromised by microscopic inclusions. These microscopic inclusions may eventually lead to crack propagation, surface fatigue, and other problems. Fortunately, the technology used in steel production has advanced, making it possible to reduce the inclusion size to a minimum. However, higher-quality steels can be expensive. The best material for a ball screw is vacuum-degassed pure alloy steel.
The lead of a ball screw shaft is also an important factor to consider. The lead is the linear distance between the ball and the screw shaft. The lead can increase the amount of space between the balls and the screws. In turn, the lead increases the speed of a screw. If the lead of a ball screw is increased, it may increase its accuracy. If not, the lead of a ball screw can be improved through preloading, lubrication, and better mounting accuracy.

China supplier Customized Aluminum Sand Casting Finish CNC Machining Part for Motors   with Good qualityChina supplier Customized Aluminum Sand Casting Finish CNC Machining Part for Motors   with Good quality